1. Home
  2. ยป
  3. Ragam
1 Oktober 2024 22:10

11 Contoh soal trigonometri dilengkapi kunci jawaban, pembahasannya gampang dicerna

Dengan memahami contoh soal trigonometri ini, kamu diharapkan dapat lebih percaya diri dalam menghadapi soal serupa Sri Jumiyarti Risno
foto: freepik.com

Brilio.net - Trigonometri, salah satu cabang matematika yang mempelajari hubungan antara sudut dan sisi dalam segitiga. Untuk memahami konsep ini dengan lebih baik, latihan soal sangat diperlukan, terutama soal-soal yang mencakup berbagai jenis persamaan trigonometri.

Setiap contoh soal trigonometri yang disajikan akan mencakup berbagai tingkat kesulitan, mulai dari yang dasar hingga yang lebih kompleks. Pembahasan lengkap yang disertakan bertujuan membantu kamu memahami langkah-langkah penyelesaian secara detail. Dengan memahami contoh soal trigonometri ini, kamu diharapkan dapat lebih percaya diri dalam menghadapi soal-soal serupa di kemudian hari.

BACA JUGA :
11 Contoh soal perbandingan dalam Matematika, beserta pembahasan lengkapnya


Latihan trigonometri tidak hanya bermanfaat untuk meningkatkan kemampuan matematika, tetapi juga sebagai bekal menghadapi ujian. Simak pembahasan lengkap dari contoh soal yang akan memudahkan pemahaman kamu tentang konsep dasar trigonometri. Selasa (1/10)

Contoh soal trigonometri, beserta kunci jawaban

foto: freepik.com

BACA JUGA :
11 Contoh soal bunga majemuk beserta kunci dan pembahasan lengkapnya

1. Perbandingan trigonometri

Soal: Jika cos = 4/5 dan berada di kuadran II, tentukan nilai sin dan tan .

Pembahasan:
- Di kuadran II, cos positif, sin negatif.
- Gunakan identitas sin + cos = 1
- sin = 1 - cos = 1 - (4/5) = 1 - 16/25 = 9/25
- sin = -3/5 (negatif karena di kuadran II)
- tan = sin / cos = (-3/5) / (4/5) = -3/4

Jawaban: sin = -3/5, tan = -3/4

2. Sudut ganda

Soal: Buktikan bahwa cos 2 = 2cos - 1.

Pembahasan:
- Gunakan rumus cos (A+B) = cos A cos B - sin A sin B
- Cos 2 = cos (+) = cos cos - sin sin
- Cos 2 = cos - sin
- Gunakan identitas sin = 1 - cos
- Cos 2 = cos - (1 - cos)
- Cos 2 = cos - 1 + cos = 2cos - 1

Jawaban: Terbukti bahwa cos 2 = 2cos - 1

3. Persamaan Trigonometri

Soal: Selesaikan persamaan sinx + cos x = 1 untuk 0 x

Pembahasan:
- Ganti sinx dengan 1 - cosx (identitas trigonometri)
- (1 - cosx) + cos x = 1
- 1 - cosx + cos x - 1 = 0
- -cosx + cos x = 0
- cos x (1 - cos x) = 0
- cos x = 0 atau cos x = 1
- x = 90 atau 270 (untuk cos x = 0)
- x = 0 atau 360 (untuk cos x = 1, tapi 360 di luar interval)

Jawaban: x = 0, 90, atau 270

4. Aplikasi dalam fisika

Soal: Sebuah pendulum sederhana berayun dengan amplitudo 30. Jika panjang tali pendulum adalah 1 meter, berapakah jarak horizontal maksimum ujung pendulum dari titik kesetimbangannya?

Pembahasan:
- Jarak horizontal = panjang tali sin amplitudo
- Jarak = 1 sin 30
- Jarak = 1 0,5 = 0,5 meter

Jawaban: Jarak horizontal maksimum = 0,5 meter

5. Transformasi grafik

Soal: Gambarkan grafik y = 2 sin(x - /4) + 1 untuk 0 x 2.

Pembahasan:
- Grafik dasar adalah y = sin x
- Pergeseran horizontal /4 ke kanan
- Amplitudo dikalikan 2
- Pergeseran vertikal 1 unit ke atas
- Gambar grafik dengan karakteristik tersebut

6. Identitas trigonometri kompleks

Soal: Buktikan bahwa (1 + tan)(1 - sin) = 1.

Pembahasan:
- Kembangkan ruas kiri:
(1 + tan)(1 - sin) = 1 - sin + tan - tan sin
- Ganti tan dengan sin / cos:
= 1 - sin + sin/cos - (sin/cos) sin
- Sederhanakan:
= 1 - sin + sin/cos - sin/cos
- Samakan penyebut:
= (cos - sin cos + sin - sin) / cos
- Faktorkan pembilang:
= (cos + sin - sin(cos + sin)) / cos
- Ingat bahwa cos + sin = 1:
= (1 - sin 1) / cos = (1 - sin) / cos
- Ini sama dengan sec - tan, yang sama dengan 1

Jawaban: Terbukti bahwa (1 + tan)(1 - sin) = 1

7. Trigonometri dalam geometri

Soal: Sebuah segitiga ABC memiliki sudut A = 60, B = 45, dan sisi c = 10 cm. Hitunglah luas segitiga tersebut.

Pembahasan:
- Sudut C = 180 - (60 + 45) = 75
- Gunakan rumus luas: L = (1/2)c sin A sin B / sin C
- L = (1/2) 10 sin 60 sin 45 / sin 75
- L = 50 (3/2) (2/2) / sin 75
- L 24,54 cm

Jawaban: Luas segitiga 24,54 cm

8. Fungsi invers trigonometri

Soal: Jika y = arcsin(1/2), tentukan nilai dari sin y + cos y.

Pembahasan:
- arcsin(1/2) = 30 atau /6 radian
- y = 30
- sin y + cos y = sin 30 + cos 30
- = 1/2 + 3/2
- = (1 + 3) / 2

Jawaban: sin y + cos y = (1 + 3) / 2

9. Limit trigonometri

Soal: Hitunglah limit berikut: lim(x0) (sin 3x) / x

Pembahasan:
- Gunakan aturan L'Hpital jika diperlukan
- lim(x0) (sin 3x) / x = 3 lim(x0) (sin 3x) / (3x)
- Ingat bahwa lim(x0) (sin x) / x = 1
- Jadi, 3 lim(x0) (sin 3x) / (3x) = 3 1 = 3

Jawaban: Limit = 3

10. Persamaan parametrik

Soal: Sebuah kurva didefinisikan oleh persamaan parametrik x = 2 cos t, y = 3 sin t. Tentukan persamaan kurva tersebut dalam bentuk Kartesius.

Pembahasan:
- Kuadratkan kedua persamaan:
x = 4 cos t
y = 9 sin t
- Bagi masing-masing dengan konstanta kuadratnya:
x/4 = cos t
y/9 = sin t
- Jumlahkan kedua persamaan:
x/4 + y/9 = cos t + sin t = 1

Jawaban: Persamaan kurva: x/4 + y/9 = 1 (elips)

11. Deret Fourier

Soal: Tuliskan tiga suku pertama dari deret Fourier untuk fungsi f(x) = x pada interval [-, ].

Pembahasan:
- Rumus umum deret Fourier:
f(x) = a/2 + (acos(nx) + bsin(nx))
- a = (1/) (- to ) x dx = 0
- a = (1/) (- to ) x cos(nx) dx = 0 untuk semua n
- b = (1/) (- to ) x sin(nx) dx = (-2/n) cos(n) = 2/n untuk n ganjil, 0 untuk n genap
- Tiga suku pertama: f(x) (2/)sin(x) + (2/3)sin(3x) + (2/5)sin(5x)

Jawaban: f(x) (2/)sin(x) + (2/3)sin(3x) + (2/5)sin(5x)

SHARE NOW
EXPLORE BRILIO!
RELATED
MOST POPULAR
Today Tags